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Abstract. We generalize the definition of the fractional Fourier transform (FRT) by expanding
the new definition proposed by Shih to the original definition. The generalized FRT is shown
to havek-periodic eigenvalues with respect to the order of Hermite–Gaussian functions and
will be reduced to the original FRT and Shih’s FRT at the two limits withk = ∞ andk = 4,
respectively. The results of computer simulations and symbolic representations of the transform
are given. Properties of the generalized FRT have been discussed.

1. Introduction

Fractional Fourier transforms (FRTs) have recently been demonstrated to be useful in
quantum mechanics [1, 2] as well as in optical information processing [3–6]. They expand
the conventional Fourier transform to a more general time–frequency (or space–frequency)
joint representation [7] by allowing the concept of the fractional integral to be applied in the
Fourier integrals. Along with their challenging applications, their mathematical properties
still attract more attention. Recently, Shih [8] re-invented a technique to fractionalize
the Fourier transform with only the weighted composition of four basic functions, i.e. the
original function, its first, second and third Fourier transforms, only according to the three
postulates that the FRTs should obey. In this paper, we first discuss the relationship of Shih’s
FRT with the original definition. We find that Shih’s FRT has the same eigenfunction
with the conventional Fourier transform, the Hermite–Gaussian polynomials, but with
different eigenvalues which have a periodicity of 4 with respect to the order of Hermite
polynomials. We then expand Shih’s fractionalization procedure allowing the periodicity
to be k = 4l (l = 1, 2, 3, . . .) and demonstrate that Shih’s FRT and the original FRT
are two extreme cases which correspond tol = 1 and l = ∞, respectively. Computer
simulations have demonstrated that the Hermite–Gaussian decomposition algorithms which
were used to calculate the original fractional Fourier transform coefficients are still valid
for the generalized definition of the FRT only by substituting the eigenvalues with the new
ones.

This paper is arranged as follows. In section 2, we briefly introduce Shih’s definition
of the FRT for the reason that we will reference it frequently in the following context. In
section 3, we represent Shih’s FRT using the base of Hermite–Gaussian polynomials, and
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then introduce our generalized definition of the FRT by expanding the format of eigenvalues
corresponding to the order of Hermite polynomials. Computer simulations are given to
compare these two definitions with the original FRT. Some properties of the generalized
FRT are briefly discussed in section 4. Finally, we present our conclusions of this paper.

2. Shih’s definition of fractional Fourier transform

Unlike the original FRT [1, 2], Shih’s definition of the FRT [8] takes an alternative
continuous way to fractionalize the Fourier transform. He assumed that any transient state
of the Fourier transform could be expressed by its first four integer-order state which is
an analogy to quantum states, because the integer-order Fourier transform is a 4-periodic
operation. Let thej th-order Fourier transformsF j , (j = 0, 1, 2, and 3) of the original
function bef0(x), f1(x), f2(x), andf3(x), respectively, such that

F0{f0(x)} = f0(x)

F1{f0(x)} = f1(x) = 1√
2π

∫ ∞

−∞
f0(x) exp(−ixx ′) dx ′

F2{f0(x)} = F1{f1(x)}
F3{f0(x)} = F1{f2(x)}. (1)

One can construct theα-order fractional Fourier transform as a weighted composition
of these four functions as follows:

Fα
s {f (x)} = Aα0f0(x)+ Aα1f1(x)+ Aα2f2(x)+ Aα3f3(x) (2)

where the weight coefficients,Aαj , j = 0, 1, 2, and 3, are continuous functions of the
fractional order only. Here we denote Shih’s FRT operator byFα

s in order to distinguish it
from the original FRTFα. Such defined FRTs obey the following postulates:

(1) Fα
s should be continuous for all real valuesα;

(2) Fα
s should reduce to an ordinary Fourier transform whenα is an integer, i.e.

F1
s = f1(x);

(3) Fα
s should have the additive property:

Fα+β
s {f (x)} = Fα

s {Fβ
s {f (x)}} = Fβ

s {Fα
s {f (x)}}. (3)

Note that the above three postulates should be satisfied by all definitions of the FRT
including the original one. Using these properties, one can obtain a set of coupled equations
for the coefficients as follows:

A
α+β
0 = Aα0A

β

0 + Aα1A
β

3 + Aα2A
β

2 + Aα3A
β

1

A
α+β
1 = Aα0A

β

1 + Aα1A
β

0 + Aα2A
β

3 + Aα3A
β

2

A
α+β
2 = Aα0A

β

2 + Aα1A
β

1 + Aα2A
β

0 + Aα3A
β

3

A
α+β
3 = Aα0A

β

3 + Aα1A
β

2 + Aα2A
β

1 + Aα3A
β

0 . (4)

The coefficientsAαj are solved to be

Aαj = exp

(
i3π

α − j

4

)
cos

(
π
α − j

2

)
cos

(
π
α − j

4

)
. (5)

Symbolically, Shih’s FRT can be more compactly written as

Fα
s {f (x)} =

3∑
j=0

exp

(
i3π

α − j

4

)
cos

(
π
α − j

2

)
cos

(
π
α − j

4

)
fj (x). (6)
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3. Generalized definition of fractional Fourier transform

The first question we may ask is: What kind of relationship exists between Shih’s definition
of the FRT and the original one? Does Shih’s definition represent a general description of
all transient states between the original image and its Fourier transform? Obviously Shih’s
FRT is different from the original FRT which can be represented as an integral [2]

Fα{f (x ′)} =
√

1 − i cot(φα)

2π
exp[ix2 cot(φα)]

×
∫ ∞

−∞
f (x ′) exp

[
i

(
x ′2 cot(φα)− 2xx ′ 1

sin(φα)

)]
dx ′ (7)

because Shih’s FRT cannot be written in such an integration format. Hereφα = πα/2
denotes an angle corresponding to the fractional orderα. In our logical reasoning, Shih’s
FRT is only a special case in the processes of the fractionalization of the Fourier transform.
There is no unique approach for the evolution from an image to its Fourier spectrum.
Furthermore, the original FRT represents transient states between the integer-order Fourier
transforms which in optics is related frequently with Fresnel diffraction; however, the
original FRT cannot be represented as a weighted combination of the first four integer-
order Fourier transforms.

In the following context we will discuss in what way Shih’s FRT is related to the original
FRT. Because Shih’s FRT is combined by the first four integer-order Fourier transforms of
the original function, it is reasonable to believe that the FRT has the same eigenfunction as
the conventional Fourier transform, i.e. the Hermite–Gaussian function

9m(x) = exp

(
−x

2

2

)
Hm(x) (8)

whereHm(x) is themth-order Hermite polynomial having the recursive relation

Hm+1(x) = 2xHm(x)− 2nHm−1(x). (9)

It is well known that thej th order Fourier transform operator has an eigenvalue
exp(iπmj/2). Therefore, one can calculate the eigenvalues for Shih’s FRT from
equation (2). Assumingm = 4n + k, wheren is any integer andk = 0, 1, 2, and 3,
substituting the functionf0(x) with 9m(x), one can obtain

Fα
s [9m(x)] = exp

(
iπkα

2

)
9m(x) = λm9m(x). (10)

The eigenvaluesλm for fractional Fourier operatorFα
s can be found as

λm = exp

(
iπkα

2

)
k = mod(m, 4) (11)

wherek is the remainder ofm divided by 4. Therefore, Shih’s assumption mandated another
periodicity of 4. As one can see, the eigenvaluesλm are 4-periodic not only with respect
to the order of the transformα but also to the order of the Hermite functionsm. One
should note that the eigenvalues for the original FRT areλm = exp(iπαm/2), which have
no periodicity with respect to the order of Hermite polynomials. This fact may be regarded
as the distinction between these two definitions.

From the derived eigenvalues,Fα
s [f (x)] can then be expressed by the superposition of

Hermite–Gaussian functions,

Fα
s [f (x)] =

∑
m

Amλmψm(x) =
∑
m

Amψm(x) exp

(
iπmod(m, 4)α

2

)
(12)
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Figure 1. Shih’s fractional Fourier transforms of a rectangular function calculated according to
equation (2).

whereψm(x) = (1/
√

2m
√
πm!)Hm(x) exp(−x2/2) are the normalized Hermite–Gaussian

functions andAm = ∫ ∞
−∞ f (x)ψm(x) dx are the superposition coefficients of the function

f (x) onto the base ofψm(x).
Shih’s definition of FRT leads to a fundamental issue that there may exist infinite

approaches to the fractionalization of the Fourier transform. Following the three postulates
mentioned above, one can fractionalize the Fourier transform by expanding the periodicity,
with respect to the orders of the Hermite–Gaussian functions, from 4 to the more general
casek, with k = 4l and l = 1, 2, 3, . . . positive integers. The expanded definition of the
FRT can thus be written as

Fα
k [f (x)] =

∞∑
m=0

exp
[
i
π

2
αmod(m, k)

]
Amψm(x) (13)

where we denote thek-periodic expanded FRT asFα
k . The reason thatk must be a multiple

of 4 is due to the confinement of the three postulates. It is not difficult to prove that
equation (13) satisfies these conditions.

The generalized FRT serves as a bridge to connect Shih’s FRT and the original definition.
From equation (13) one can easily recognize that these two definitions are just two extreme
cases of the expanded definition withk = 4 andk = ∞, respectively.

Shih’s definition of the FRT consists of the weighted sum of the first four Fourier
transforms of a function. However, for thek-periodic presentation, the four integer-order
Fourier transforms are not enough to construct the fractional Fourier transform. Besides
the integer-order Fourier transforms, we must insert more intermediate states of Fourier
transformsFβ [f (x)], β = 4n/k, n = 0, 1, . . . , k− 1, between the zeroth- and fourth-order
Fourier transforms. We must realize that they are the FRTs under the original definition [2].
The superposition can be expressed as

Fα[f (x)] =
k−1∑
n=0

BnFβ [f (x)] (14)

where Bn is the decomposition coefficients which will be given below. Using the
superposition of Hermite–Gaussian polynomials, equation (17) becomes
k−1∑
n=0

Bn

∞∑
m=0

exp

(
i
π

2

4mn

k

)
Amψm(x) =

∞∑
m=0

exp

[
i
π

2
αmod(m, k)

]
Amψm(x). (15)
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Figure 2. Shih’s fractional Fourier transforms of a rectangular function calculated from the
Hermite–Gaussian superposition algorithm. In our calculation, the first 200 Hermite polynomials
were employed.

This means that
k−1∑
n=0

Bn exp

(
i
π

2

4mn

k

)
= exp

[
i
π

2
αmod(m, k)

]
(16)

which is equivalent to

Bn =
k−1∑
m=0

1

k
exp

(
− i2π

mn

k

)
exp

(
i
πmα

2

)
. (17)

Thus we have

Bn = 1

k

1 − exp[i2π(αl − n)]

1 − exp[i2π(αl − n)/k]
= 1

k
exp

[
iπ(αl − n)

k − 1

k

]
sin[π(αl − n)]

sin[π(αl − n)/k]
(18)

where one should remember thatk = 4l andβ = 4n/k = n/l. The final result will be

Fα
k [f (x)] =

k−1∑
n=0

1

k
exp

[
iπ(αl − n)

k − 1

k

]
sin[π(αl − n)]

sin[π(αl − n)/k]
Fβ [f (x)]. (19)

This equation will be naturally reduced to Shih’s FRT withk = 4, i.e. l = 1. When
k → ∞, the coefficient

1

k
exp

[
iπ(αl − n)

k − 1

k

]
sin[π(αl − n)]

sin[π(αl − n)/k]
(20)

turns out to be a Kronecker delta functionδ(αl, n). One can, therefore, write the case of
k → ∞ as

Fα
k [f (x)] = Fα[f (x)]. (21)

4. Properties of the generalized fractional Fourier transform

We have computer-simulated Shih’s FRT and the generalized FRT on a rectangular function
and compared the results with the plots generated by the original FRT. Figures 1 and 2
present Shih’s FRT by two different approaches from equation (2) and equation (12),
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Figure 3. The fractional Fourier transform of a rectangular function,α = 0.6, calculated
according to (a) the original definition, (b) and (c) the generalized definition of the FRT with
k = 16 andk = 20, respectively.

respectively. The results show that these two equations are identical unless in figure 2
we only use the firstN = 200 Hermite–Gaussian functions and thus the original function
cannot be recovered completely. Figure 3 gives the simulation results of the generalized
FRT and the comparison with the original FRT. Figure 3(a) shows the FRT of orderα = 0.6
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Figure 4. The shift property of the generalized FRT for (a)k = 4 and (b)k = 64. The
rectangular functionf (x) is shifted tof (x + 4).

while figure 3(b) indicates the result of the generalized FRT with the same order butk = 16.
The plot in figure 3(b) is similar to that of figure 3(a). When the periodicityk becomes
larger, these two plots are identical.

Furthermore, for any given positive integerl, there arel − 1 generalized FRTs with
fractional ordersα = 1/l, 2/l, . . . , l − 1/l, α ∈ [0, 1], which are identical to the original
FRTs with the same orders. For example, in the case ofl = 2, F0.5

k [f (x)] ≡ F0.5[f (x)].
If l → ∞, the relationFα

k [f (x)] ≡ Fα[f (x)] always holds for any orders. The special
case is that of Shih’s definition which is identical to the original FRT only at integer orders.
Figure 3(c) shows the result of the generalized FRT withk = 20 andα = 0.6, which is
identical to the curve in figure 3(a).

All the three kinds of FRT are scale- and shift-variant transforms. This property can
be easily seen from the computer simulations. During the processes of the fractionalization
from Shih’s FRT to the original FRT by quadrupling the periodicityk, the spatial (or
temporal) and frequency information of the input image becomes more and more mixed,
which means that at lower periodicityk the FRT has a looser space–frequency representation.
Figure 4(a) shows the simulation of a shifted Shih’s FRT of a rectangular function with
α = 0.6. The shifting parameter isb = 4. When the shiftb is sufficiently large, the FRT
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spectrum consists both of the spatial and frequency information of the original input in
which the frequency part can give all the information related to the input image and the
spatial part indicates the location of the input. For some space-variant applications this may
be a nice property. However, whenk grows, these two pieces of information mix together.
Figure 4(b) represents the shifted generalized FRT withk = 64 with the same condition as
for figure 4(a).

An interesting property associated with the generalized FRT concerns the concept of
self-fractional-Fourier functions which originate from Caola’s self-Fourier functions [9].
Similar to the meaning of self-Fourier function, a function is called a self-fractional-Fourier
function if it transforms to itself after undergoing a fractional Fourier transform. Mendlovic
et al [10] have given a construction of a self-fractional-Fourier functionFα(x) via any
transformable functionf (x)

F α(x) = f̃ 0(x)+ f̃ α(x)+ f̃ 2α(x)+ · · · + f̃ (k
′−1)α(x) (22)

wheref̃ α(x) is theα-order fractional Fourier transform of the functionf (x), while k′ and
l′ are the minimum integers which satisfy the relationk′ = 4l′/α. Whenα = 1, thenk′ = 4,
so that the functionFα(x) turns to the self-Fourier function

F(x) = f0(x)+ f1(x)+ f2(x)+ f3(x) (23)

with the same meanings here;f0(x), f1(x), f2(x), andf3(x) are the first four integer-order
Fourier transforms of functionf (x).

Let k = k′ = 4l, and then we havel = l′/α. Using this relation, one can analyse
the characteristics of self-fractional-Fourier functions under the three definitions of FRT.
For Shih’s case,l = 1, which forces the orderα = 1 in order to have a minimum
integerl′ = 1. This means that the self-Fourier function is unchanged after experiencing a
Shih’s FRT. It can be understood that a self-Fourier functionF(x) has a set of 4-periodic
eigenvalues respective to the Hermite–Gaussian functions{4, 0, 0, 0}. Similarly, functions
iF(x), −F(x), and−iF(x) which correspond to the eigenvalues of{0, 4, 0, 0}, {0, 0, 4, 0},
and{0, 0, 0, 4}, respectively [11], are also unchanged after Shih’s FRT.

For the generalized FRT andk > 4, the self-Fourier function cannot be
unchanged; however, we can obtain the self fractional Fourier functions of orders
α = (l − l′)/ l, (l − l′ − 1)/ l, . . . , (l − 1)/ l, respectively. For example, ifk = 16, one
can construct three self-fractional-Fourier functions:F

1
4 (x), F

1
2 (x), and F

3
4 (x). For a

conventional FRT, there exists a self-fractional-Fourier function for any given fractional
orderα 6= 1.

5. Conclusions

We have generalized Shih’s definition of the fractional Fourier transform by taking a
k-periodic eigenvalue with respect to the orders of the Hermite–Gaussian base. The
generalized FRT naturally links the Shih’s definition of the FRT and the original FRT
in the limitations ofk = 4 and k = ∞, respectively. The expressions of superposition
on Hermite–Gaussian functions and on the original fractional Fourier transforms for the
generalized FRT are given. Its property concerned with the self-fractional-Fourier functions
are discussed.
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